Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AWP-ODC is a 4th-order finite difference code used for linear wave propagation, Iwan-type nonlinear dynamic rupture and wave propagation, and Strain Green Tensor simulation2. We have ported and verified the linear and topography version of AWP-ODC, with discontinuous mesh as well as topography, to HIP so that it can also run on AMD GPUs. The topography code achieved a 99.6% parallel efficiency on 4,096 nodes on Frontier, a Leadership Computing Facility at Oak Ridge National Laboratory. We have also implemented CUDA-aware features and on-the-fly GDR compression in the linear version of the ported HIP code. These enhancements significantly improve data transfer efficiency between GPUs, reducing communication overhead and boosting overall performance. We have also extended CUDA-aware features to the topography version and are actively working on incorporating GDR compression into this version as well. We see 154% benefits over IMPI in MVAPICH2-GDR with CUDA-aware support and on-the-fly compression for linear AWP-ODC on Lonestar-6 A100 nodes. Furthermore, we have successfully integrated a checkpointing feature into the nonlinear IWAN version of AWP-ODC, prepared for future extreme-scale simulation during Texascale Days of Frontera at TACC.more » « less
-
Abstract Observations of a regular pulse burst (RPB) at the end of a K‐event are analyzed utilizing a simple geometric model and particle swarm optimization (PSO) to estimate the currents and propagation speeds of successive pulses of the RPB. The results show that the current of successive pulses is strongly overlapped and, for typical speeds of continuously propagating K‐events, are unphysically large (88 kA), exceeding the currents of most strokes to ground. By default, the unphysical nature of the result, coupled with very high frequency interferometer observations of an RPB in Florida, shows that the propagation speed of the pulses is significantly faster than expected, namely ∼0.6–1.8 × 108 m/s. This reduces the inferred current from 88 kA down to 6–18 kA, typical of intracloud events. The fast propagation speed of the stepping is explained by successive pulses retracing much of the path of the preceding pulses due to the successive pulses being strongly overlapped.more » « less
An official website of the United States government

Full Text Available